Auto-Encoding Bayesian Inverse Games

Xinjie Liu*, Lasse Peters*, Javier Alonso-Mora, Ufuk Topcu, David Fridovich-Keil ***equal contribution**

Abstract

- Game theory naturally models the coupling of agents' decisions in multi-agent interaction. However, complete game models are often unavailable in realworld scenarios, e.g., due to unknown agents' objectives.
- Main Contribution: We propose a tractable approach for approximate **Bayesian inference** of **posterior** distributions of unknown game parameters.
- The method embeds a **differentiable game solver** into a variational autoencoder (VAE), naturally handling continuous and multi-modal distributions.

Preliminaries: Generalized Nash Games

robot:	$\mathcal{S}^r_{ heta}(au^h) := rg\min_{ au_r}$	$J^r_ heta(au^r, au^h)$
	s.t.	$g_{\theta}^r(\tau^r,\tau^h) \ge 0$
human:	$\mathcal{S}^h_{\theta}(\boldsymbol{\tau}^r) := \arg\min_{\boldsymbol{\tau}_h}$	$J^h_ heta(au^h, oldsymbol{ au}^r)$
	s.t.	$g^h_{\theta}(\tau^h, \tau^r) \ge 0$

- Coupled trajectory optimization problems.
- Solution: Generalized Nash equilibrium (GNE).
- Parameter θ : Unknown aspects of the game, e.g., agents' goal position, desired driving speed, lane preference, etc.

human goal θ ?

- multi-modal.

- and constraints.
- Naturally handles continuous, multi-modal solve at runtime.
- dataset of observed interactions.

distributions. The pipeline supports efficient sampling from the inferred posteriors and does **not** require **game**

• The structured VAE can be trained from an unlabeled

xinjie-liu.github.io/projects/bayesian-inverse-games/

gives **improved** downstream motion planning **safety** (Fig. 3). The MLE baseline performs poorly in case of uninformative observations (Fig. 4).

Project Website

Contact

Xinjie Liu https://xinjie-liu.github.io