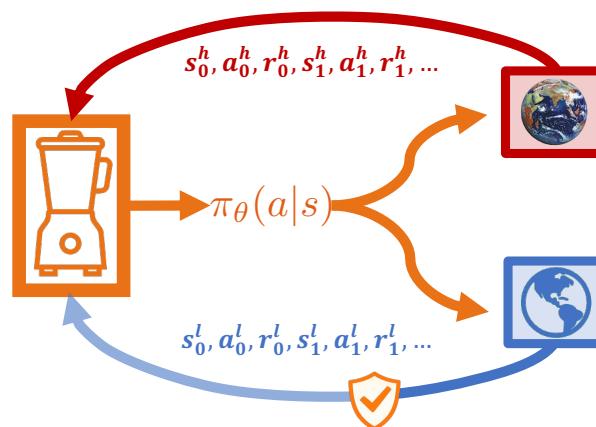


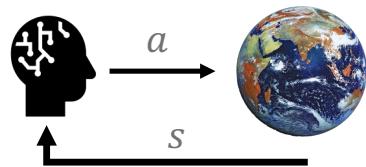
A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation

Xinjie Liu*, Cyrus Neary*, Kushagra Gupta, Wesley A. Suttle, Christian Ellis,
Ufuk Topcu, and David Fridovich-Keil



Motivation: Data Scarcity in Reinforcement Learning (RL)

- Online RL algorithms require excessive interaction with the **real environment/high-fidelity simulation**



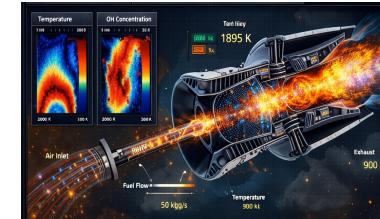
👎 \$\$\$, slow, even unsafe ... but ✅ accurate

Autonomous driving



Power systems

Robotics



Combustion simulation

Molecular simulation

Images generated with ChatGPT and Gemini

2

Motivation

Preliminaries

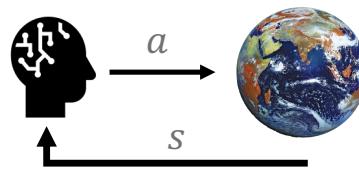
Approach & Theory

Experiments

Summary

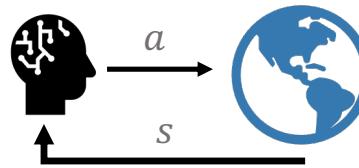
Motivation: Data Scarcity in Reinforcement Learning (RL)

- Online RL algorithms require excessive interaction with the **real environment/high-fidelity simulation**



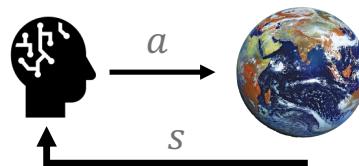
👎 \$\$\$, slow, even unsafe ... but ✅ accurate

- **Low-fidelity simulation** provides low-cost ways to gather large datasets: reduced-order models, generative world models, heuristic reward functions, digital twins ...



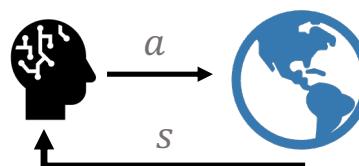
👍 \$, fast, safe ... but ✖ biased

Motivation: Data Scarcity in Reinforcement Learning (RL)



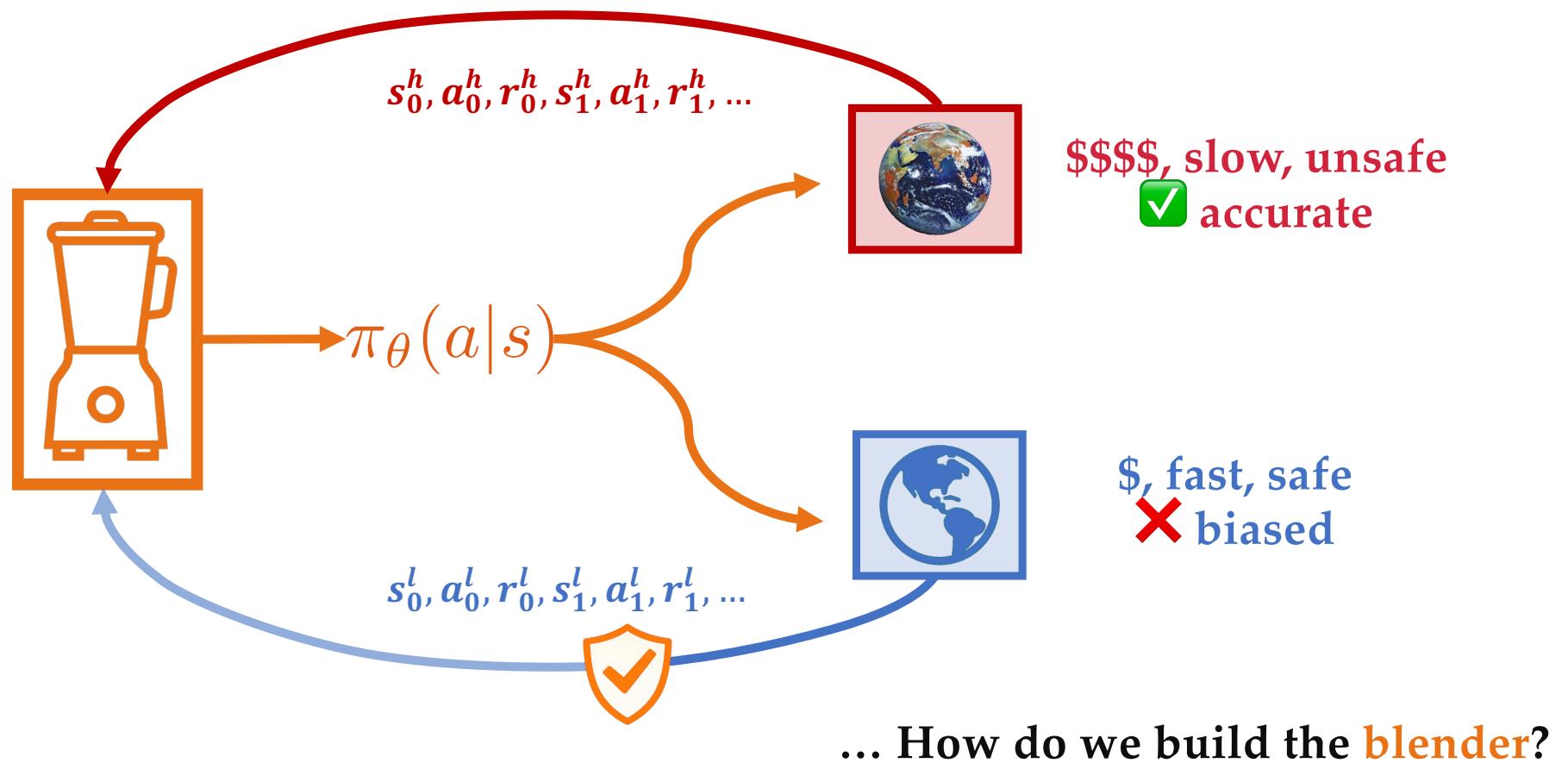
👎 \$\$\$, slow, even unsafe ... but ✅ accurate

≠



👍 \$, fast, safe ... but ✗ biased

How can we enable sample-efficient RL in the real world by mixing multi-fidelity data, while being robust to low-fidelity data biases?



Modeling Multi-Fidelity RL Problems

$$\mathcal{M}^h = (S, A, \Delta_{sI}, \gamma, T, p^h, R^h)$$

✓ **\$\$\$\$ accurate**

$$\mathcal{M}^l = (S, A, \Delta_{sI}, \gamma, T, p^l, R^l)$$

✗ **\$ biased**

Objective: Learn a performant policy for the **high-fidelity environment**

$$\max_{\theta} \mathbb{E} \left[\sum_{t=0}^T \gamma^t r_t^h \mid \tau^h \sim \mathcal{M}^h(\pi_{\theta}) \right], \quad \tau^h = s_0^h, a_0^h, r_0^h, \dots, s_T^h$$

Reminder: On-Policy Policy Gradient Algorithms

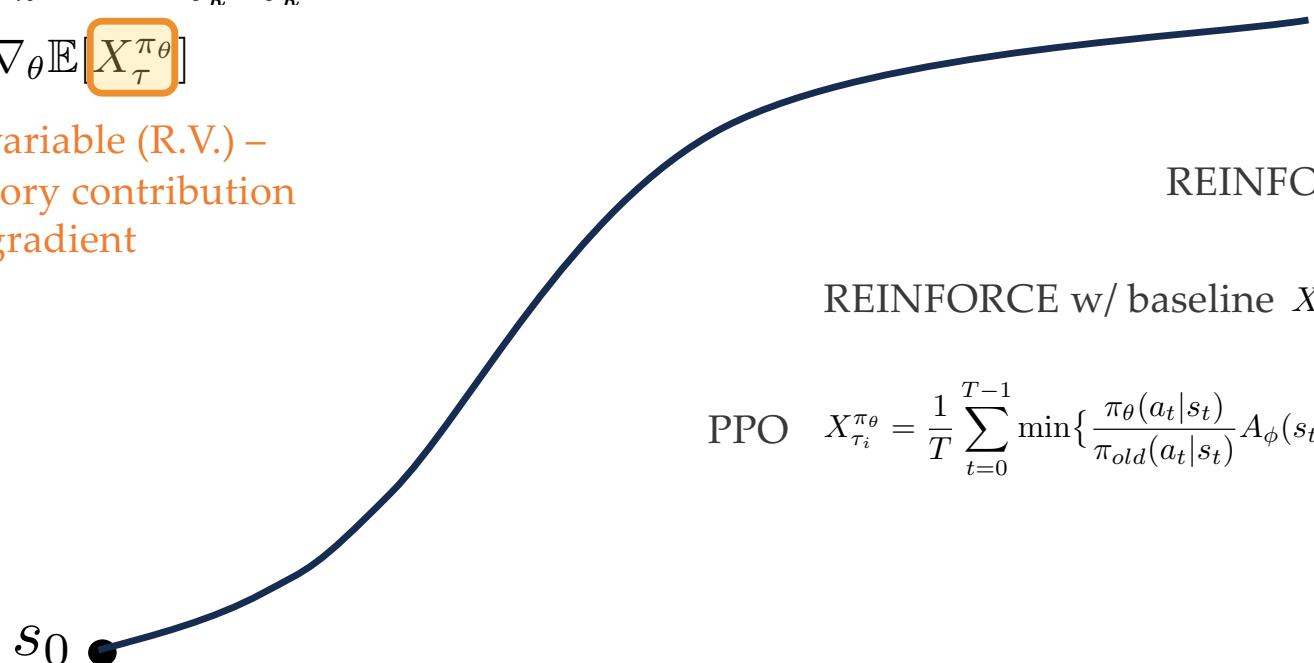
Objective: Maximize $J_\theta = \mathbb{E} \left[\sum_t \gamma^t r_t \mid \tau \sim \mathcal{M}(\pi_\theta) \right]$

Strategy: Gradient ascent

$$\theta_{k+1} = \theta_k + \alpha \nabla_{\theta_k} J_{\theta_k}$$

$$\nabla_{\theta} J_{\theta} \approx \nabla_{\theta} \mathbb{E}[X_{\tau}^{\pi_{\theta}}]$$

Random variable (R.V.) –
per-trajectory contribution
to policy gradient



Sample $\tau \sim \mathcal{M}(\pi_\theta)$

Compute R.V. $X_{\tau}^{\pi_{\theta}}$

$$\text{REINFORCE } X_{\tau_i}^{\pi_{\theta}} = \frac{1}{T} \sum_{t=0}^{T-1} G_t \log(\pi_{\theta}(a_t|s_t))$$

$$\text{REINFORCE w/ baseline } X_{\tau_i}^{\pi_{\theta}} = \frac{1}{T} \sum_{t=0}^{T-1} (G_t - V_{\phi}(s_t)) \log(\pi_{\theta}(a_t|s_t))$$

$$\text{PPO } X_{\tau_i}^{\pi_{\theta}} = \frac{1}{T} \sum_{t=0}^{T-1} \min \left\{ \frac{\pi_{\theta}(a_t|s_t)}{\pi_{old}(a_t|s_t)} A_{\phi}(s_t, a_t), \text{clip} \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{old}(a_t|s_t)}, 1 - \epsilon, 1 + \epsilon \right] A_{\phi}(s_t, a_t) \right\}$$

...

Reminder: On-Policy Policy Gradient Algorithms

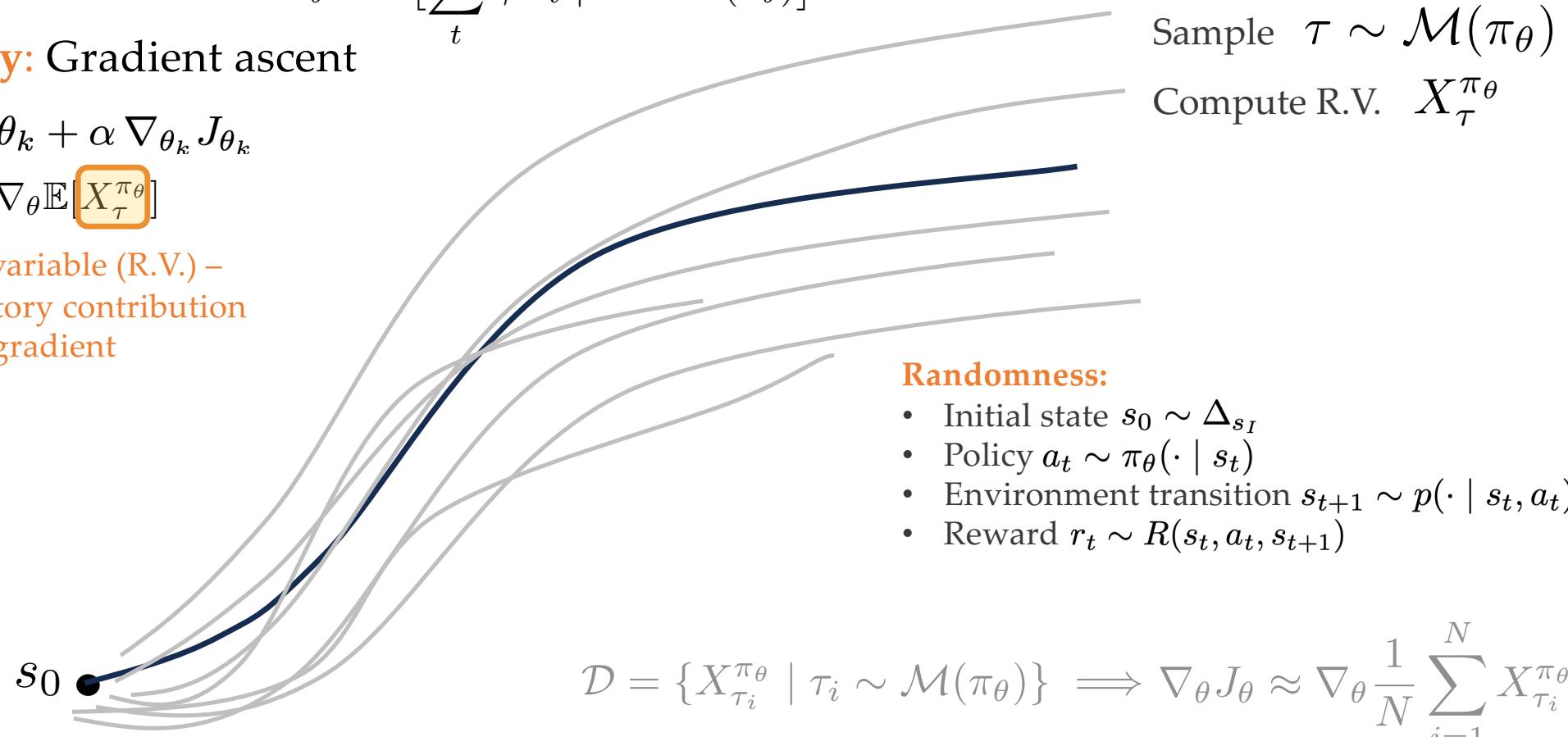
Objective: Maximize $J_\theta = \mathbb{E} \left[\sum_t \gamma^t r_t \mid \tau \sim \mathcal{M}(\pi_\theta) \right]$

Strategy: Gradient ascent

$$\theta_{k+1} = \theta_k + \alpha \nabla_{\theta_k} J_{\theta_k}$$

$$\nabla_{\theta} J_{\theta} \approx \nabla_{\theta} \mathbb{E} [X_{\tau}^{\pi_{\theta}}]$$

Random variable (R.V.) –
per-trajectory contribution
to policy gradient



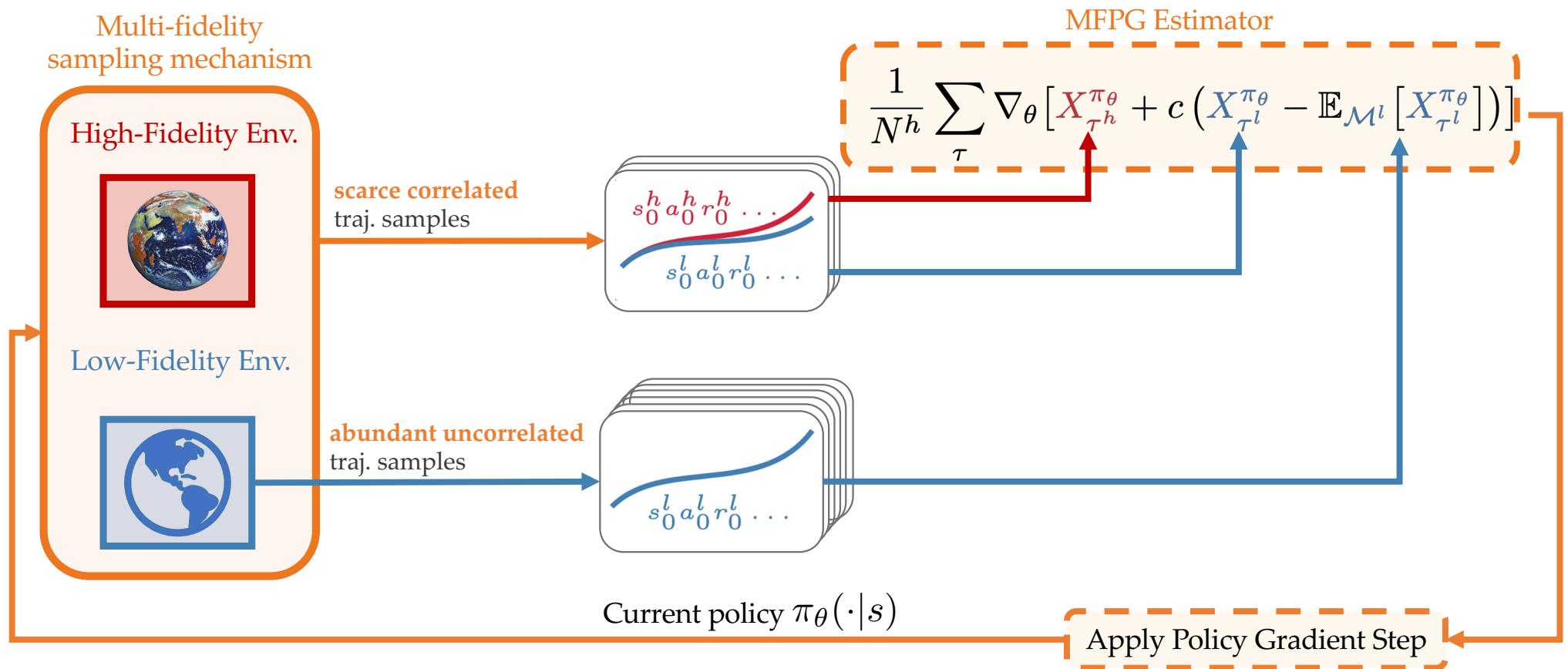
Challenge & Strategy

$$\nabla_{\theta} J_{\theta} \approx \nabla_{\theta} \frac{1}{N^h} \sum_{i=1}^{N^h} X_{\tau_i^h}^{\pi_{\theta}}$$

Challenge: high-fidelity data **scarcity** (small N^h) causing high **estimation variance** for $\mathbb{E}[X_{\tau_i^h}^{\pi_{\theta}}]$ and slow convergence

Strategy: **ground** learning in high-fidelity samples (**unbiased**); use abundant low-fidelity samples solely as a **variance-reduction** tool

The Multi-Fidelity Policy Gradient (MFPG) Framework



Instantiate MPFG with established policy gradient loss:

$$\text{REINFORCE: } X_{\tau}^{\pi_{\theta}} = \frac{1}{T} \sum_{t=0}^{T-1} G_t \log \pi_{\theta}(a_t | s_t)$$

10

Multi-Fidelity Control Variate Estimator

$$Z^{\pi_\theta}(c) := \mathbf{X}_{\tau^h}^{\pi_\theta} + c \left(\mathbf{X}_{\tau^l}^{\pi_\theta} - \mathbb{E}_{\mathcal{M}^l} \left[\mathbf{X}_{\tau^l}^{\pi_\theta} \right] \right)$$

$$\min_c \text{Var}(Z^{\pi_\theta}(c)) \implies c^* = -\rho \left(\mathbf{X}_{\tau^h}^{\pi_\theta}, \mathbf{X}_{\tau^l}^{\pi_\theta} \right) \frac{\sqrt{\text{Var}(\mathbf{X}_{\tau^h}^{\pi_\theta})}}{\sqrt{\text{Var}(\mathbf{X}_{\tau^l}^{\pi_\theta})}} \quad (\text{estimated from training data})$$

Pearson
correlation

Lemma 1 Unbiasedness and variance reduction

- $\mathbb{E}_{\mathcal{M}^h} [Z^{\pi_\theta}(c)] = \mathbb{E}_{\mathcal{M}^h} [\mathbf{X}_{\tau^h}^{\pi_\theta}]$
- $\text{Var}(Z^{\pi_\theta}(c^*)) = (1 - \rho^2(\mathbf{X}_{\tau^h}^{\pi_\theta}, \mathbf{X}_{\tau^l}^{\pi_\theta})) \text{Var}(\mathbf{X}_{\tau^h}^{\pi_\theta})$

How do we draw **correlated**
multi-fidelity samples?

Theorem 1 Faster finite-sample convergence of MFPG-REINFORCE than plain REINFORCE

Bottom line: low-fidelity data $\implies \rho^2(\mathbf{X}_{\tau^h}^{\pi_\theta}, \mathbf{X}_{\tau^l}^{\pi_\theta}) \uparrow \implies \text{Var}(Z^{\pi_\theta}(c^*))$

faster MFPG algorithm convergence

Sampling Correlated Trajectories

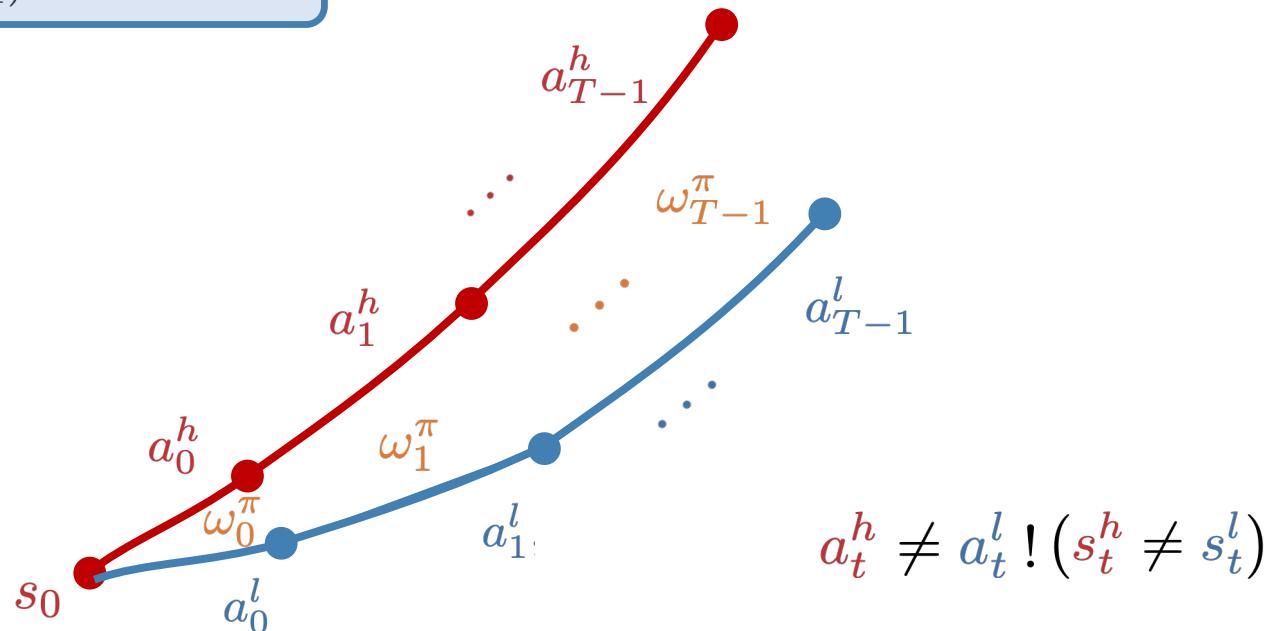
Randomness:

- Initial state $s_0 \sim \Delta_{s_I}$
- Policy $a_t \sim \pi_\theta(\cdot | s_t)$
- Environment transition $s_{t+1} \sim p(\cdot | s_t, a_t)$
- Reward $r_t \sim R(s_t, a_t, s_{t+1})$

👍 Can be controlled by the algorithm! (share initial state + action sampling noise)

- Reset low-fidelity simulator to matched s_0
- Policy reparameterization trick $a_t \leftarrow \pi_\theta(s_t, \omega_t^{\pi_\theta})$

Uncontrolled randomness



Experimental Results

- Variance reduction
- Reliability & robustness to fidelity gaps
 - Dynamics shift
 - Misspecified (negated) reward

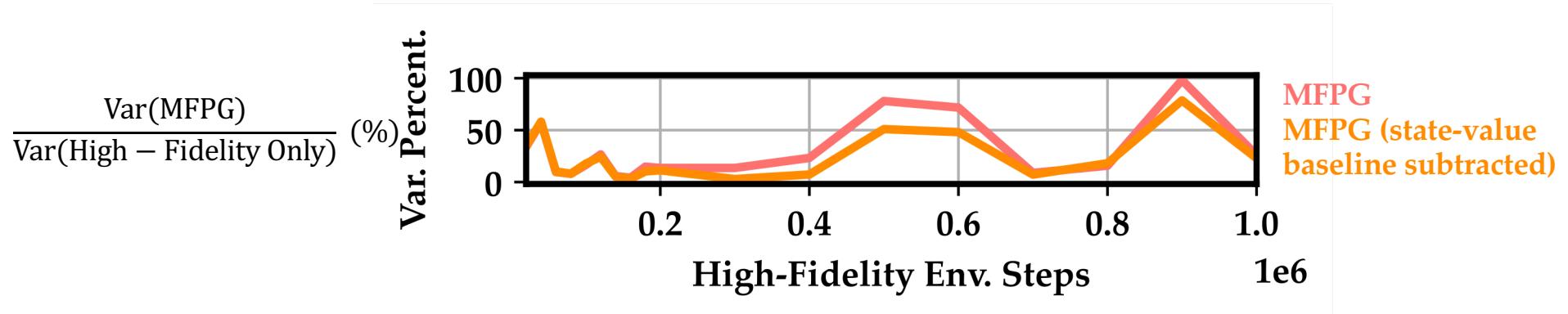
Experimental Results

- **Variance reduction**
- Reliability & robustness to fidelity gaps
 - Dynamics shift
 - Misspecified (negated) reward

MFPG substantially reduces PG estimation variance



Robot control task: MuJoCo Hopper
High-fidelity environment: changed friction ($1.2\times$)
Baseline: High-Fidelity Only



When high-fidelity data are scarce, MFPG reduces variance significantly—(see paper) **far more substantial** than common state-value baseline subtraction

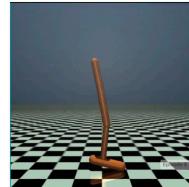
Experimental Results

- Variance reduction
- Reliability & robustness to fidelity gaps
 - Dynamics shift
 - Reward misspecification

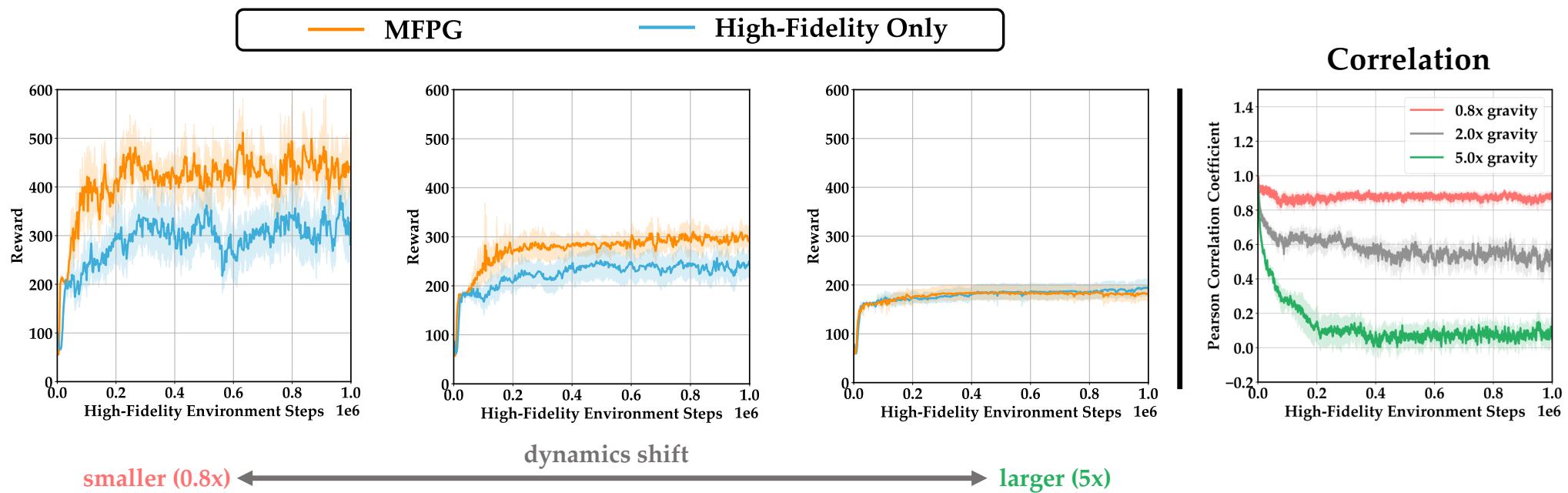
Experimental Results

- Variance reduction
- **Reliability & robustness to fidelity gaps**
 - Dynamics shift
 - Reward misspecification

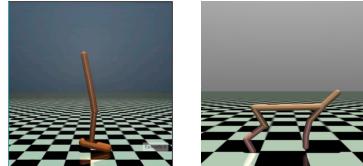
MFPG improves performance by leveraging multi-fidelity correlation



Robot control task: MuJoCo Hopper
High-fidelity environment: changed gravity
Baseline: High-Fidelity Only



MFPG presents the strongest **consistency** and **robustness** compared to the evaluated off-dynamics RL baselines



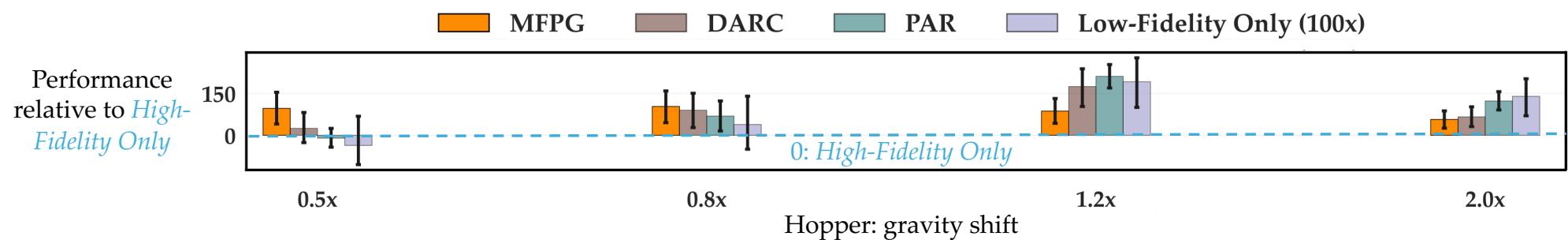
Robot control tasks: MuJoCo Hopper, HalfCheetah

High-fidelity environment: changed gravity, friction

Baselines: off-dynamics RL (DARC [1], PAR [2]), Low-Fidelity Only

Common baseline: High-Fidelity Only

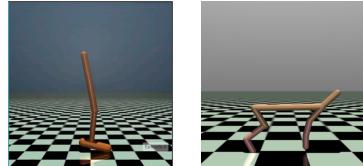
- When **low-fidelity data are neutral/beneficial** and dynamics gaps are mild/moderate, MFPG is the **only method** that **consistently outperforms High-Fidelity Only** across **all** settings
 - Error bars: 95% bootstrap confidence intervals; bars strictly above 0 indicate significant improvement vs. **High-Fidelity Only**



[1] Eysenbach et al. "Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers", ICLR 2021.

[2] Lyu et al. "Cross-Domain Policy Adaptation by Capturing Representation Mismatch", ICML 2024.

MFPG presents the strongest **consistency** and **robustness** compared to the evaluated off-dynamics RL baselines



Robot control tasks: MuJoCo Hopper, HalfCheetah

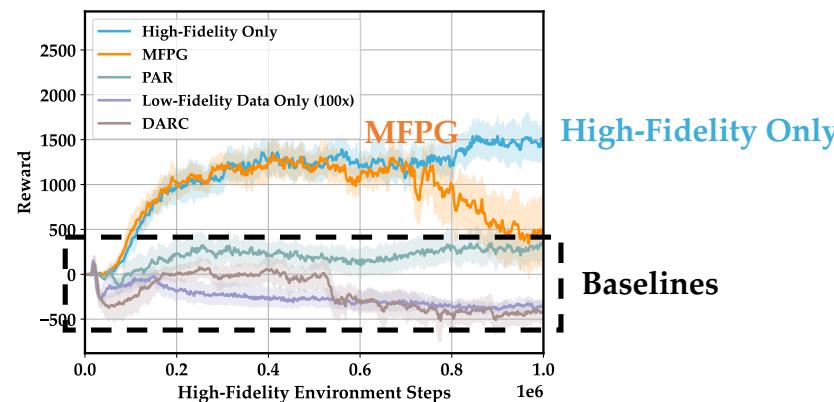
High-fidelity environment: changed gravity, friction

Baselines: off-dynamics RL (DARC [1], PAR [2]), Low-Fidelity Only

Common baseline: High-Fidelity Only

- When **low-fidelity data are neutral/beneficial** and dynamics gaps are mild/moderate, MFPG is the **only method** that consistently outperforms High-Fidelity Only across **all** settings
- When **low-fidelity data are harmful**, MFPG presents the **strongest robustness**
 - MFPG tracks **High-Fidelity Only** for most of training (cautious use of low-fidelity data only for variance reduction)
 - Baselines fail catastrophically (aggressive exploitation of low-fidelity data)

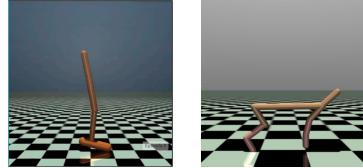
Extreme case:
HalfCheetah
(5× friction)



[1] Eysenbach et al. "Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers", ICLR 2021.

[2] Lyu et al. "Cross-Domain Policy Adaptation by Capturing Representation Mismatch", ICML 2024.

MFPG presents the strongest **consistency** and **robustness** compared to the evaluated off-dynamics RL baselines



Robot control tasks: MuJoCo Hopper, HalfCheetah

High-fidelity environment: changed gravity, friction

Baselines: off-dynamics RL (DARC [1], PAR [2]), Low-Fidelity Only

Common baseline: High-Fidelity Only

- When **low-fidelity data are neutral/beneficial** and dynamics gaps are mild/moderate, MFPG is the **only method** that consistently outperforms High-Fidelity Only across **all** settings
- When **low-fidelity data are harmful**, MFPG presents the **strongest robustness**
 - MFPG tracks **High-Fidelity Only** for most of training (cautious use of low-fidelity data only for variance reduction)
 - Baselines fail catastrophically (aggressive exploitation of low-fidelity data)
 - Sweep of 39 scenarios (paper): MFPG is the most robust among the evaluated methods

[1] Eysenbach et al. "Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers", ICLR 2021.

[2] Lyu et al. "Cross-Domain Policy Adaptation by Capturing Representation Mismatch", ICML 2024.

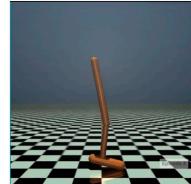
Experimental Results

- Variance reduction
- Reliability & robustness to fidelity gaps
 - Dynamics shift
 - Reward misspecification

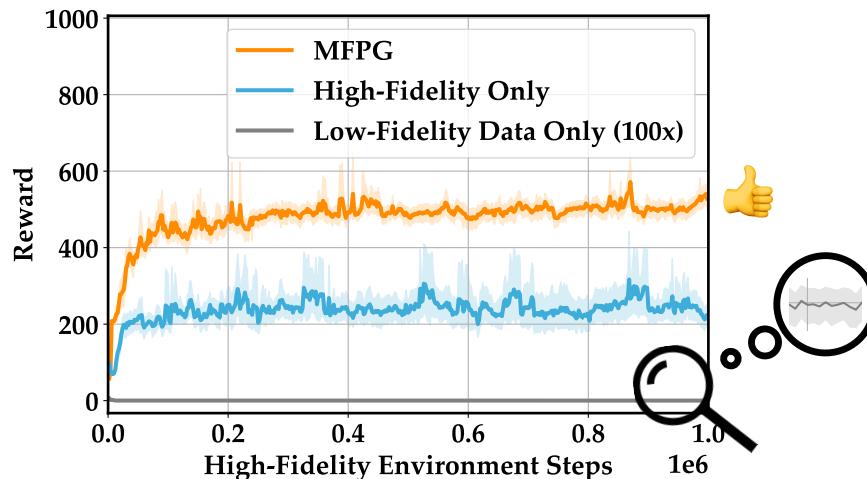
Experimental Results

- Variance reduction
- **Reliability & robustness to fidelity gaps**
 - Dynamics shift
 - Reward misspecification

MFPG benefits from negative correlation (negated low-fidelity reward)



Robot control task: MuJoCo Hopper
Low-fidelity environment: negated reward model
Baseline: High-Fidelity Only, Low-Fidelity Only



Even when the low-fidelity environment is **substantially different** or even **adversarial**, it might still provide useful information for **multi-fidelity training**, e.g., **negative correlation**

Summary

MFPG: **sample-efficient** RL framework by **mixing** scarce high-fidelity data with abundant low-fidelity simulation data

- **grounded** to high-fidelity data (**unbiased**)
- low-fidelity data and cross-fidelity **correlation** for **variance reduction**
- handles **dynamics** gaps and **reward** misspecification
- more **robust** to low-fidelity data biases than off-dynamics RL baselines

Future work:

- Broader algorithms (Appendix G; actor-critic, model-based, off-policy, offline RL)
- Enhancing multi-fidelity correlation
- More general settings (e.g., multiple fidelities, different state-action spaces)
- Real-world RL

Summary

MFPG: **sample-efficient** RL framework by **mixing** scarce high-fidelity data with abundant low-fidelity simulation data

- **grounded** to high-fidelity data (**unbiased**)
- low-fidelity data and cross-fidelity **correlation** for **variance reduction**
- handles **dynamics** gaps and **reward** misspecification
- more **robust** to low-fidelity data biases than off-dynamics RL baselines



Xinjie Liu*

Cyrus Neary*

Kushagra Gupta

Wesley A. Suttle

Christian Ellis

Ufuk Topcu

David Fridovich-Keil

(code available)

<https://xinjie-liu.github.io/mfpg-rl/>

26

*Indicates equal contribution

Motivation

Preliminaries

Approach & Theory

Experiments

Summary