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Motivation: Data Scarcity in Reinforcement Learning (RL)

* Online RL algorithms require excessive interaction with the real environment/high-fidelity
simulation
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Motivation: Data Scarcity in Reinforcement Learning (RL)

* Online RL algorithms require excessive interaction with the real environment/high-fidelity
simulation

¥ $$%9%, slow, even unsafe ... but W@ accurate

* Low-fidelity simulation provides low-cost ways to gather large datasets: reduced-order
models, generative world models, heuristic reward functions, digital twins ...

& §, fast, safe ... but X biased
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Motivation: Data Scarcity in Reinforcement Learning (RL)

& §, fast, safe ... but X biased
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How can we enable sample-efficient RL in the real
world by mixing multi-fidelity data, while being
robust to low-fidelity data biases?

$$$$, slow, unsafe
accurate

$, fast, safe
X biased

... How do we build the blender?



Modeling Multi-Fidelity RL Problems
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a Objective: Learn a performant policy for the high-fidelity environment h
T
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Reminder: On-Policy Policy Gradient Algorithms

Maximize Jy = E[Z Vire | T~ M(m)]
. Sample T ~ M(ﬂ'e)

Compute R.V. X 77.T ¢

Gradient ascent

Orr1 =0 + Vg, Jo,
VoJs ~ VeE[X™]

T-1

1
REINFORCE X;° Gy log(mg(at|st))
t=0

REINFORCE w/ baseline X7 = Z — Vy(s¢)) log(mo(a|s:))

t=0

7Te(at|5t)

Told(at|st)
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Reminder: On-Policy Policy Gradient Algorithms
Objective: Maximize Jy = E[Z Yoy | 7~ M(mg)]

. S 1 ~
Strategy: Gradient ascent ample 7 ~ M(7)

Compute R.V. X ;.T 0
Ok+1 =0k + a Ve, Jo,

VoJs ~ VeE[XT]

Random variable (R.V.) —
per-trajectory contribution
to policy gradient

Randomness:

+ Initial state so ~ Ag,

« Policy a; ~ mg(- | s¢)

« Environment transition s¢11 ~ p(- | s¢, a)
« Reward r; ~ R(S¢, 04, St41)

/ 1
~Vo— Y XTI

S0 & D={XT |1 ~M(mg)} = VyJy N

1=1
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Challenge & Strategy

Nh
1 § : s
V@Jg ~ Vg m X'r;

1=1

Challenge: high-fidelity data scarcity (small N) causing high estimation
variance for E[X?] and slow convergence

Strategy: ground learning in high-fidelity samples (unbiased); use abundant
low-fidelity samples solely as a variance-reduction tool
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The Multi-Fidelity Policy Gradient (MFPG) Framework

Multi-fidelity MFPG Estimator
sampling mechanism (:______——-——T——l
— V XWG-I—C X”" Evo | X0 —
ST R X VD e B [XT])
y \ _____ F _—— —_—— ] || || | __ ] ] ]
scarce correlated h h h \\
traj. samples 0?0070 - 4 :
S(l)a%)'f"(l) o & §
J

Low-Fidelity Enw.

abundant uncorrelated
traj. samples /
ol W

Current policy 7g ( | 8)

Instantiate MPFG with established policy gradient loss:

T-1
1
REINFORCE: X7* = 2% Gilogmg(as | st) 10

Motivation Preliminaries _ Experiments Summary



Multi-Fidelity Control Variate Estimator
Z™(c) == X" + (X —Epu [ XT7])

Var(X 4
min Var(Z™(¢)) = ¢ = — p(X X :ﬁ) (estimated from training data)
Pearson \/ Var(X : v )
correlation

Lemma 1 Unbiasedness and variance reduction
* Enn[Z27(c)] = Epqn [ X
© Var(Z™(c*)) = [1—p? (X7, X)) Var(XT)

Theorem 1 Faster finite-sample convergence of MFPG-REINFORCE than plain REINFORCE

How do we draw
multi-fidelity samples?

Bottom line: = low-fidelity data= p2(X™¢, X™?) 1= Var(Z™(c*)) |

——> faster MFPG algorithm convergence
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Sampling Correlated Trajectories

) & Can be controlled by the algorithm! (share initial state + action sampling noise)
Randomness: R :

S * Reset low-fidelity simulator to matched s,
 Initial state So ~ Ag,

. . . . o

- Policy a; ~ 7T0(' | St) Policy reparameterization trick ¢ <— g (St, Wy )
* Environment transition s;+1 ~ p(- | s¢, a¢)
. Reward 7y ~ R(st,as, St41) Uncontrolled randomness

l ap 7 a1 (s # 51)

S0
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Experimental Results



Experimental Results

* Variance reduction



MFPG substantially reduces PG estimation variance

Robot control task: MuJoCo Hopper
High-fidelity environment: changed friction (1.2X)
Baseline: High-Fidelity Only

g 100
Var(MFPGQ) %) = 50 A
Var(High — Fidelity Only) =¥
= 0 ; ; . .
> 0.2 0.4 0.6 0.8 1.0
High-Fidelity Env. Steps le6

When high-fidelity data are scarce, MFPG reduces variance significantly — (see paper)
than common state-value baseline subtraction
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Experimental Results



Experimental Results

* Reliability & robustness to fidelity gaps
* Dynamics shift



MFPG improves performance by leveraging multi-fidelity correlation

Robot control task: MuJoCo Hopper
High-fidelity environment: changed gravity
Baseline: High-Fidelity Only

|  —— MFPG —— High-Fidelity Only |
Correlation
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Motivation

High-Fidelity Environment Steps 1e6

smaller (0.8x) <

dynamics shift

High-Fidelity Environment Steps 1e6

High-Fidelity Environment Steps 1e6

Preliminaries

» larger (5x)

Approach & Theory [ Experiments |

High-Fidelity Environment Steps 1e6
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MFPG presents the strongest consistency and robustness compared to the evaluated
off-dynamics RL baselines

Robot control tasks: MuJoCo Hopper, HalfCheetah
High-fidelity environment: changed gravity, friction
Baselines: off-dynamics RL (DARC [1], PAR [2]),
Common baseline: High-Fidelity Only

*  When low-fidelity data are neutral/beneficial and dynamics gaps are mild/moderate, MFPG is the only method that
consistently outperforms High-Fidelity Only across all settings

» Error bars: 95% bootstrap confidence intervals; bars strictly above 0 indicate significant improvement vs. High-Fidelity Only

& MFPG [ DARC [ PAR [ Low-Fidelity Only (100x)

Performance 150
relative o Higi TN sl
; ; 1 P 0 [~ S ———————— —— _‘ —— _. - T ___________________ -
Fidelity Only 0: High-Fidelity Only
0.5x 0.8x 1.2x 2.0x
Hopper: gravity shift
[1] Eysenbach et al. “Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers”, ICLR 2021. 19

[2] Lyu et al. “Cross-Domain Policy Adaptation by Capturing Representation Mismatch”, ICML 2024.
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MFPG presents the strongest consistency and robustness compared to the evaluated
off-dynamics RL baselines

Robot control tasks: MuJoCo Hopper, HalfCheetah
High-fidelity environment: changed gravity, friction
Baselines: off-dynamics RL (DARC [1], PAR [2]),
Common baseline: High-Fidelity Only

When low-fidelity data are neutral/beneficial and dynamics gaps are mild/moderate, MFPG is the only method that
consistently outperforms High-Fidelity Only across all settings

When low-fidelity data are harmful, MFPG presents the strongest robustness

MIFPG tracks High-Fidelity Only for most of training (cautious use of low-fidelity data only for variance reduction)
Baselines fail catastrophically (aggressive exploitation of low-fidelity data)

Extreme case: —— High-Fidelity Only

HalfCheetah 00— e

5)( friction 2000 1 —— Low-Fidelity Data Only (100x) . . .

( ) T MFPG High-Fidelity Only

SO0 e - - - — -
| 1
v MMW | Baselines
) P e — ———— .o g 1
0.0 0.2 0.4 0.6 0.8 1.0
High-Fidelity Environment Steps 1le6

[1] Eysenbach et al. “Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers”, ICLR 2021. 20
[2] Lyu et al. “Cross-Domain Policy Adaptation by Capturing Representation Mismatch”, ICML 2024.
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MFPG presents the strongest consistency and robusiness compared to the evaluated
off-dynamics RL baselines

Robot control tasks: MuJoCo Hopper, HalfCheetah
High-fidelity environment: changed gravity, friction
Baselines: off-dynamics RL (DARC [1], PAR [2]),
Common baseline: High-Fidelity Only

*  When low-fidelity data are neutral/beneficial and dynamics gaps are mild/moderate, MFPG is the only method that
consistently outperforms High-Fidelity Only across all settings

*  When low-fidelity data are harmful, MFPG presents the strongest robustness

¢ MIFPG tracks High-Fidelity Only for most of training (cautious use of low-fidelity data only for variance reduction)
* Baselines fail catastrophically (aggressive exploitation of low-fidelity data)
*  Sweep of 39 scenarios (paper): MFPG is the most robust among the evaluated methods

[1] Eysenbach et al. “Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers”, ICLR 2021.
[2] Lyu et al. “Cross-Domain Policy Adaptation by Capturing Representation Mismatch”, ICML 2024.
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Experimental Results



Experimental Results

* Reliability & robustness to fidelity gaps

* Reward misspecification



MFPG benefits from negative correlation (negated low-fidelity reward)

Robot control task: MuJoCo Hopper
Low-fidelity environment: negated reward model
Baseline: High-Fidelity Only, Low-Fidelity Only

1000
—— MFPG
800 —— High-Fidelity Only
—— Low-Fidelity Data Only (100x)
= 600 ]
<
E ’\E
e~ 400
0O
(g
01 | | | |
0.0 0.2 0.4 0.6 0.8 1.

High-Fidelity Environment Steps 1e6

Even when the low-fidelity environment is substantially different or even adversarial, it might
still provide useful information for multi-fidelity training, e.g., negative correlation
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Summary
MFPG: RL framework by scarce high-fidelity data with

abundant low-fidelity simulation data

* to high-fidelity data ( )

® low-fidelity data and cross-fidelity for

® handles gaps and misspecification

® more to low-fidelity data biases than off-dynamics RL baselines

Future work:
Broader algorithms (Appendix G; actor-critic, model-based, off-policy, offline RL)
Enhancing multi-fidelity correlation

More general settings (e.g., multiple fidelities, different state-action spaces)
Real-world RL
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Summary
MFPG: sample-efficient RL framework by mixing scarce high-fidelity data with

abundant low-fidelity simulation data

grounded to high-fidelity data (unbiased)

low-fidelity data and cross-fidelity correlation for variance reduction
handles dynamics gaps and reward misspecification

more robust to low-fidelity data biases than off-dynamics RL baselines

https://xinjie-liu.github.io/mfpg-rl/ 2
*Indicates equal contribution - ’ - -

Motivation Preliminaries Approach & Theory Experiments _


https://xinjie-liu.github.io/mfpg-rl/
https://xinjie-liu.github.io/mfpg-rl/
https://xinjie-liu.github.io/mfpg-rl/
https://xinjie-liu.github.io/mfpg-rl/
https://xinjie-liu.github.io/mfpg-rl/

