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Motivation

Opponents

e Single-agent optimal control
- A popular framework: “predict-then-plan”
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Motivation

120 km/h
Fix predictions

e Single-agent optimal control
- A popular framework: “predict-then-plan”

objective: e.g., drive fast\

min [Jl (Xl, Ul e.g., desired speed, target lane

|X1,U1|
SN[ RL(X,UY) =0
gl(Xl, Ul) 2 0

N\ _/

rajectory: state
constraints, e.g., collision avoidance
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Motivation

Fix predictions

e Single-agent optimal control
- A popular framework: “predict-then-plan”
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Motivation

Fix predictions

e Single-agent optimal control
- A popular framework: “predict-then-plan”

X Interdependence!
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Motivation

e Single-agent optimal control
- A popular framework: “predict-then-plan”

e Multi-agent dynamic game
- tightly coupled plans
- “simultaneous predict and plan”
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Motivation

e Single-agent optimal control
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o _I'Jl _L"; i"_ - E - A popular framework: “predict-then-plan”
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e Multi-agent dynamic game
- tightly coupled plans
- “simultaneous predict and plan”
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“Forward” Dynamic Games

An N-player open-loop Nash game as coupled trajectory optimization:

other players’ trajectories

[ min Ji(Xi7 U"’{Xﬁi7 Uﬁi;}Q";) objective: e.g., drive fast

X Ui
[Vi c [N]}{ S.t. hi(.Xi,‘ Ui) = () e.g., vehicle dynamics
Pg'(X",U") >0 e.g., max. speed
\ Sg(Xi, UiE Xﬂ', Uﬁij > () e.g. collision avoidance (shared)

Solution: generalized Nash equilibrium (GNE)

(X*,U*) = ((Xl*, Ul*), e (XN*, UN*))
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“Forward” Dynamic Games

An N-player open-loop Nash game as coupled trajectory optimization:

other players’ trajectories

[ min Ji(Xi7 U"’{Xﬁi7 Uﬁi;}Q";) objective: e.g., drive fast

Xt U®
LYt Tt .g., vehicle dynamics
vie[N){ St MELUD=0 R
ng(X%’ UZ) > () e.g., max. speed
\ Sg(Xi, Uz’E Xﬂ', Uﬂ’ij > () e.g.,collision avoidance (shared)

Solution: generalized Nash equilibrium (GNE)

Model-predictive game-play (MPGP): receding horizon
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“Forward” Dynamic Games

61?7 Unknown

1 120 km/h
e.g., desired speed, target lane 0

(min  JUXE UL XL U6 () * 3

xigi o~ T 0 T T
[ \V/Z c [N]]< S.t. hZ(XZ,Uz) =0

Pgi(XT, U > 0 L 4
\ Sg(Xianax_'iaU_‘i) Z O
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Model-predictive game-play (MPGP)
against opponents with unknown objectives (0)
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Forward and Inverse Games

Trajectories
solve forward game

Objectives(0) J —_— —
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Forward and Inverse Games

Trajectories
solve forward game

Objectives(0) J

Objectives(0) 7

E
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Forward and Inverse Games

Trajectories
solve forward game

Objectives(0) J

Adaptive MPGP!

Observations

Objectives(6) 009090

84 ! 110 km/h I

4{ 120 km/h]
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Inverse Games: Constrained Maximum Likelihood Estimation (IMLE)

Observations Trajectory

max_  p(Y]] [)CaU])

0,X,U e.g., opponents’ desired speed, target lane

s.t. (X, U) is a GNE of Gamé(0))

]
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Inverse Games: Constrained Maximum Likelihood Estimation (IMLE)

Y | X
Jax p(Y | X, U)

s.t. {(X, U) is a GNE of Game(@)}

optimality (KKT) conditions of a forward game

Vi € [N] Ve £1(K, U, PN AJ0) = 0
0<Pg" (X" U") LPX" >0

h(X,U:%x;) =0
(0<*g(X, U) LA >0
5
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Inverse Games: Constrained Maximum Likelihood Estimation (IMLE)

Y | X. U
Jax p(Y | X, U)

s.t. {(X, U) is a GNE of Game(@)}

Challenge: how to efficiently encode the equilibrium constraints?
o Nonconvexity

« Complementarity conditions X constraint qualification
o Real-time computation

]
TUDelft "
votvaton |

Approach Results Beyond MLE Summary




Approach: Differentiable Games

The Forward Computation Graph

dlfferentlable'

8 solveGame @(—P(YX U)]_’@

This entire computation graph can be made differentiable!

fax  p(Y | X, U)

s.t. (X, U) is a GNE of Game(6)

]
TUDelft

Motivation Problem

_ Results Beyond MLE Summary




Approach: Differentiable Games

The Forward Computation Graph

dlfferentlable'

8 solveGame @‘P(YX U)]_’@

This entire computation graph can be made differentiable!

= We can update estimates of 8 via gradient descent on the loss function.
How?

max p(Y | X*(0), U*(B))v
Vo,
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Approach: Differentiable Games

The Forward Computation Graph

dlfferentlable'

g solveGame @‘P(YX U)]_’@

This entire computation graph can be made differentiable!

= We can update estimates of 8 via gradient descent on the loss function.
How?
Math! (Implicit function theorem)
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Results
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Example: Ramp-Merging
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Example: Ramp-Merging

® Monte Carlo study: 3, 5, 7 players; 1200 trials total

B _Z Z«’: B E ® Unknown parameters: desired speed, target lane
(12D for 6 opponents)

; ® Approaches

Forward

Objective Collis. avoid. game
inference inequalities

ours 'V 4 Vg v
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Example: Ramp-Merging

® Monte Carlo study: 3, 5, 7 players; 1200 trials total
E
- X ® Unknown parameters: desired speed, target lane

(12D for 6 opponents)

: ® Approaches

Forward

Objective Collis. avoid. game
inference inequalities
Ours v v v
lis. i lities (i KKT- v X v
Collis. inequalities (inverse game) gnsirained
Objective inference  Heuristic X X v

5 Interaction ~ MPC X X X
TUDelft o ot Contons | | 2

[1] Lasse Peters et al. “Inferring Objectives in Continuous Dynamic Games from Noise-Corrupted Partial State Observations”. RSS. 2021.
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Ramp-Merging: Quantitative Results

® Safety (fewer collisions)

- Interaction reasoning is essential

Collisions: 3 Players

w
o
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0 0
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® ours © KKT-constrained @ heuristic © mpc

Collisions: 5 Players

Collisions: 7 Players
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Ramp-Merging: Quantitative Results

® Safety (fewer collisions)

- Interaction reasoning is essential
- Care about objective inference and inverse game inequalities in dense scenarios

® ours © KKT-constrained @ heuristic © mpc

Collisions: 3 Players Collisions: 5 Players Collisions: 7 Players
40
44 43
(%)) 30 28 w0 40 w 40
c o c
S S S
2 20 2 2
o o o
o O oo © 20
10
5 7 8
0 0 0 0 0 0 1 0 1
(; ours KKT-cons.heuristic mpc ours IKKT-cons heuristic] mpc l ours IKKT-cons heuristic] mpc
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Ramp-Merging: Quantitative Results

® Safety (fewer collisions)
- Interaction reasoning is essential

- Care about objective inference and inverse game inequalities in dense scenarios

® Efficiency (lower ego costs)

- Interaction reasoning & objective inference are important in denser settings
- Collision avoidance inequalities in inverse games does not matter

® ours © KKT-constrained @ heuristic © mpc
Ego Costs: 3 Players

Ego Costs: 5 Players Ego Costs: 7 Players
—_ 9 T
4 6 20
D @ @
Q Q (@]
(&) o 3 o
&2 [ S S
| L w10
0 =+ == L
-3 T
(; |ours| lKKT-cons heuristic  mpc ours KKT-cons[heuristic mpc ours [KKT-cons heuristic] mpc
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Ramp-Merging: Conclusions

® Safety (fewer collisions)
- Interaction reasoning is essential
- Care about objective inference and inverse game inequalities in dense scenarios

® Efficiency (lower ego costs)
- Interaction reasoning & objective inference are important in denser settings
- Collision avoidance inequalities in inverse games does not matter
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Ramp-Merging: Qualitative Results

Ours D i —

MPC a e - 0 -~
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Example: 2-Player Tracking Game
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https://www.youtube.com/watch?v=f0KJuCC1Xyo

Example: 2-Player Tracking Game
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https://www.youtube.com/watch?v=f0KJuCC1Xyo

Summary

® An adaptive model-predictive game-play (MPGP) framework enabled
by differentiating through a game solver

- handling inequalities in inverse games
- differentiability

]
TUDelft
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Future Work

® Planning algorithm utilizing the beliefs (stochastic games)

® End-to-end planning pipeline with perception module
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Approach: “Forward” Games as Mixed Complementarity Problems (MCPs)

In a Mixed Complementarity Problem, we have |decision variable z € R"Jand problem
[data F(z):R" — R" {; € RU{—o0},u; € RU{co},j € [n]{At the solution z* one of the
following cases holds:

z; =45, Fj(z") 2 0
Ej < Z; < ’le,Fj(Z*) =0
0

z; = uj, Fj(2%) <0.

Optimality conditions of an open-loop game can be cast as the problem data of an equivalent MCP!

. : ) i X ) i V(Xl_Ul)[,l i [— o0 ] [0 |
Vi e [N] {V(XI_Ui)Ll(X, U)w)l’)\z’ 8)\; 9) = () U Voo ;.w)ﬁN ;OO OO
i i i i H '
OSPQ(X7U>_J_1)/\ ZO > = | P) F(z:0) = p’;l ( — _(C))O L — z
h(X,U;x;) =0 : : : :
’ S PAY g’ 0 00
0<*g(X,U)L*A>0 A 4 0 °

TU Delft

Solver reference: S. P. Dirkse and M. C. Ferris, “The PATH solver: A nommonotone stabilization scheme for mixed complementarity problems,” 1995.



Approach: Differentiation Through Mixed Complementarity Problems
0—»[ solveMCP ]—»z

ﬂssumption: strong complementarity \

In a Mixed Complementarity Problem, we have decision variable z € R™ and problem
data F(z) : R" — R",{; € RU{—oc0},u; € RU{x},j € [n]. At the solution z* one of the
following cases holds:

;—gjaF( 9) 0
lj < z; <wuyj, Fj(250) =0
z; = uy, Fj(27,0) <0

. /
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Approach: Differentiation Through Mixed Complementarity Problems
0—»[ solveMCP ]—»z*

ﬂssumption: strong complementarity \

In a Mixed Complementarity Problem, we have decision variable z € R™ and problem
data F(z) : R" — R",{; € RU{—oc0},u; € RU{x},j € [n]. At the solution z* one of the
following cases holds:

ZEJJFJ(Z*aB) > 0
£j<zﬂf<Uj,Fj(Z*;9) 0 \Vgg* p— O
; 0

/

N

TUDelft
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Approach: Differentiation Through Mixed Complementarity Problems
0 solveMCP zZ"

Assumption: strong complementarity

In a Mixed Complementarity Problem, we have decision variable z € R™ and problem
data F(z) : R" — R",{; € RU{—oc0},u; € RU{x},j € [n]. At the solution z* one of the
following cases holds:

Implicit function theorem (IFT): if invertible

0= Vo [F(2(0).0)] = VoF +|V:F)[Voz") + (V- F) (V")

]
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Approach: Differentiation Through Mixed Complementarity Problems
0 solveMCP zZ"

Weak complementarity: subgradient; invertibility: least-square solution

In a Mixed Complementarity Problem, we have decision variable z € R™ and problem
data F(z) : R" — R",{; € RU{—oc0},u; € RU{x},j € [n]. At the solution z* one of the
following cases holds:

Implicit function theorem (IFT): if invertible

0=Vp [F(z*(@), 9)} = VoF —I-I(VZ*F) Voz") + (Vg*F) (Voz™)

]
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