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Multi-Agent Interaction

Video: Thomas Schlijper, 2018.
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Video: Zoox, 2021.
3

Motivation Problem Approach Results Beyond MLE Summary



Motivation

Motivation Problem Approach Results Beyond MLE Summary

Ego

Opponents
● Single-agent optimal control

- A popular framework: “predict-then-plan”
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● Single-agent optimal control

- A popular framework: “predict-then-plan”
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Fix predictions

trajectory: states, controls

objective: e.g., drive fast

e.g., desired speed, target lane

120 km/h

constraints, e.g., collision avoidance
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Fix predictions

● Single-agent optimal control

- A popular framework: “predict-then-plan”
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Fix predictions

Interdependence!

● Single-agent optimal control

- A popular framework: “predict-then-plan”
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Motivation

● Single-agent optimal control

- A popular framework: “predict-then-plan”

● Multi-agent dynamic game

Motivation Problem Approach Results Beyond MLE Summary
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- tightly coupled plans

- “simultaneous predict and plan”
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● Single-agent optimal control

- A popular framework: “predict-then-plan”

● Multi-agent dynamic game

- tightly coupled plans

- “simultaneous predict and plan”
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An N-player open-loop Nash game as coupled trajectory optimization:

Motivation Problem Approach Results Beyond MLE Summary
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e.g., vehicle dynamics

e.g., max. speed

objective: e.g., drive fast

e.g., collision avoidance (shared)

other players’ trajectories

Solution: generalized Nash equilibrium (GNE)

“Forward” Dynamic Games



An N-player open-loop Nash game as coupled trajectory optimization:
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e.g., vehicle dynamics

e.g., max. speed

objective: e.g., drive fast

e.g., collision avoidance (shared)

other players’ trajectories

Solution: generalized Nash equilibrium (GNE)

Model-predictive game-play (MPGP): receding horizon

“Forward” Dynamic Games
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e.g., desired speed, target lane

120 km/h

𝜽1

𝜽¬1? Unknown

“Forward” Dynamic Games



Motivation Problem Approach Results Beyond MLE Summary

Model-predictive game-play (MPGP) 

against opponents with unknown objectives (𝜽)
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Forward and Inverse Games
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Forward and Inverse Games
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Adaptive MPGP!

Forward and Inverse Games

110 km/h𝜃4

100 km/h

𝜃2
120 km/h

𝜃3



Inverse Games: Constrained Maximum Likelihood Estimation (MLE)
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Observations Trajectory

e.g., opponents’ desired speed, target lane



Inverse Games: Constrained Maximum Likelihood Estimation (MLE)
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optimality (KKT) conditions of a forward game



Inverse Games: Constrained Maximum Likelihood Estimation (MLE)
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Challenge: how to efficiently encode the equilibrium constraints?
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● Nonconvexity

● Complementarity conditions      constraint qualification

● Real-time computation



The Forward Computation Graph

Approach: Differentiable Games

Motivation Problem Approach Results Beyond MLE Summary
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differentiable!

This entire computation graph can be made differentiable!
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Approach: Differentiable Games
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This entire computation graph can be made differentiable!

differentiable!
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⇒ We can update estimates of θ via gradient descent on the loss function.

How?



The Forward Computation Graph

Approach: Differentiable Games
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This entire computation graph can be made differentiable!

⇒ We can update estimates of θ via gradient descent on the loss function.

How?

Math! (Implicit function theorem)

differentiable!
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Results



Example: Ramp-Merging

Motivation Problem Approach Results Beyond MLE Summary
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Example: Ramp-Merging
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⚫ Monte Carlo study: 3, 5, 7 players; 1200 trials total

⚫ Unknown parameters: desired speed, target lane 

(12D for 6 opponents)
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Inverse game
Forward 

gameObjective 

inference

Collis. avoid. 

inequalities

Ours

⚫ Approaches



Example: Ramp-Merging
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⚫ Monte Carlo study: 3, 5, 7 players; 1200 trials total

⚫ Unknown parameters: desired speed, target lane 

(12D for 6 opponents)

⚫ Approaches

Inverse game
Forward 

gameObjective 

inference

Collis. avoid. 

inequalities

Ours

KKT-

constrainedCollis. inequalities (inverse game)

HeuristicObjective inference

MPCInteraction

[1] Lasse Peters et al. “Inferring Objectives in Continuous Dynamic Games from Noise-Corrupted Partial State Observations”. RSS. 2021.

[1]



Ramp-Merging: Quantitative Results

Motivation Problem Approach Results Beyond MLE Summary

⚫ Safety (fewer collisions)
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- Interaction reasoning is essential
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⚫ Safety (fewer collisions)

- Interaction reasoning is essential

- Care about objective inference and inverse game inequalities in dense scenarios
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- Interaction reasoning & objective inference are important in denser settings

- Collision avoidance inequalities in inverse games does not matter

Ramp-Merging: Quantitative Results
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⚫ Safety (fewer collisions)

- Interaction reasoning is essential

- Care about objective inference and inverse game inequalities in dense scenarios

⚫ Efficiency (lower ego costs)
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Ramp-Merging: Conclusions

Motivation Problem Approach Results Beyond MLE Summary

⚫ Safety (fewer collisions)

- Interaction reasoning is essential

- Care about objective inference and inverse game inequalities in dense scenarios

⚫ Efficiency (lower ego costs)

- Interaction reasoning & objective inference are important in denser settings

- Collision avoidance inequalities in inverse games does not matter
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Ramp-Merging: Qualitative Results

Motivation Problem Approach Results Beyond MLE Summary

Ours

MPC
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Example: 2-Player Tracking Game

Motivation Problem Approach Results Beyond MLE Summary

More videos: https://www.youtube.com/watch?v=f0KJuCC1Xyo
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Human

Tracker

Goal
?

https://www.youtube.com/watch?v=f0KJuCC1Xyo


Example: 2-Player Tracking Game
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More videos: https://www.youtube.com/watch?v=f0KJuCC1Xyo
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https://www.youtube.com/watch?v=f0KJuCC1Xyo


Summary

Motivation Problem Approach Results Beyond MLE Summary
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⚫ An adaptive model-predictive game-play (MPGP) framework enabled 

by differentiating through a game solver

- handling inequalities in inverse games

- differentiability



Future Work

Motivation Problem Approach Results Beyond MLE Summary
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⚫ Planning algorithm utilizing the beliefs (stochastic games)

⚫ End-to-end planning pipeline with perception module



#betterTUgether
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Approach: “Forward” Games as Mixed Complementarity Problems (MCPs)

In a Mixed Complementarity Problem, we have decision variable             and problem 

data                                                                            At the solution    , one of the 

following cases holds:

Solver reference: S. P. Dirkse and M. C. Ferris, “The PATH solver: A nommonotone stabilization scheme for mixed complementarity problems,” 1995.
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Optimality conditions of an open-loop game can be cast as the problem data of an equivalent MCP!



Approach: Differentiation Through Mixed Complementarity Problems

𝜽 solveMCP
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𝒛∗

In a Mixed Complementarity Problem, we have decision variable             and problem 

data                                                                            At the solution    , one of the 

following cases holds:

Assumption: strong complementarity
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In a Mixed Complementarity Problem, we have decision variable             and problem 

data                                                                            At the solution    , one of the 

following cases holds:

Assumption: strong complementarity

Implicit function theorem (IFT):
if invertible

𝜽 solveMCP 𝒛∗



Approach: Differentiation Through Mixed Complementarity Problems
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In a Mixed Complementarity Problem, we have decision variable             and problem 

data                                                                            At the solution    , one of the 

following cases holds:

Weak complementarity: subgradient; invertibility: least-square solution

Implicit function theorem (IFT):
if invertible

𝜽 solveMCP 𝒛∗
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