On Game-Theoretic Planning with Unknown Opponents' Objectives

Xinjie Liu MSc in Robotics

10 July 2023

Thesis committee:

Associate Professor Javier Alonso-Mora, Supervisor Assistant Professor Laura Ferranti Assistant Professor Luca Laurenti Lasse Peters, Daily supervisor

Multi-Agent Interaction

Video: Thomas Schlijper, 2018.

Motivation

Problem

Approach

Results

Beyond MLE

Summary

Multi-Agent Interaction

Motivation

Problem

Approach

Results

Beyond MLE

Summary

- Single-agent optimal control lacksquare
 - A popular framework: "predict-then-plan"

Motivation

Approach

Results

Beyond MLE

Summary

Problem

Approach

Results

Fix predictions

- Single-agent optimal control
 - A popular framework: "predict-then-plan"

Motivation

Approach

Results

Summary

Fix predictions

- Single-agent optimal control
 - A popular framework: "predict-then-plan"

Motivation

Approach

Results

Beyond MLE

Summary

- Single-agent optimal control
 - A popular framework: "predict-then-plan"
- Multi-agent dynamic game
 - tightly **coupled** plans
 - "simultaneous predict and plan"

Motivation

Results

Beyond MLE

- Single-agent optimal control
 - A popular framework: "predict-then-plan"
- Multi-agent dynamic game
 - tightly **coupled** plans
 - "simultaneous predict and plan"

Motivation

Results

Beyond MLE

"Forward" Dynamic Games

An N-player open-loop Nash game as **coupled** trajectory optimization:

Solution: generalized Nash equilibrium (GNE)

$$(\mathbf{X}^*, \mathbf{U}^*) := ((X^{1*}, U^{1*}), \dots, (X^{N*}, U^{N*}))$$

Motivation

Problem

Approach

Results

Beyond MLE

"Forward" Dynamic Games

An N-player open-loop Nash game as **coupled** trajectory optimization:

other players' trajectories

$$\forall i \in [N] \begin{cases} \min_{X^i, U^i} J^i(X^i, U^i, \mathbf{X}^{\neg i}, \mathbf{U}^{\neg i}; \boldsymbol{\theta}^i) & \text{objective: e.g., drive fast} \\ \text{s.t.} h^i(X^i, U^i) = 0 & \text{e.g., vehicle dynamics} \\ pg^i(X^i, U^i) \ge 0 & \text{e.g., max. speed} \\ sg(X^i, U^i, \mathbf{X}^{\neg i}, \mathbf{U}^{\neg i}) \ge 0 & \text{e.g., collision avoidance (shared)} \end{cases}$$

Solution: generalized Nash equilibrium (GNE)

Model-predictive game-play (MPGP): receding horizon

Motivation

Problem

"Forward" Dynamic Games

 θ^{-1} ? Unknown

Summary

Model-predictive game-play (MPGP) against opponents with unknown objectives (θ)

Motivation

Problem

Approach

Results

Beyond MLE

Summary

Forward and Inverse Games

Motivation

Problem

Approach

Results

Beyond MLE

Summary

Forward and Inverse Games

15

Motivation

Results

Forward and Inverse Games

Inverse Games: Constrained Maximum Likelihood Estimation (MLE)

17

Motivation

Approach

Results

Beyond MLE

Summary

Inverse Games: Constrained Maximum Likelihood Estimation (MLE)

$$\begin{array}{l} \max_{\boldsymbol{\theta}, \mathbf{X}, \mathbf{U}} \quad p(\mathbf{Y} \mid \mathbf{X}, \mathbf{U}) \\ \text{s.t.} \quad (\mathbf{X}, \mathbf{U}) \text{ is a GNE of } \operatorname{Game}(\boldsymbol{\theta}) \end{array}$$

optimality (KKT) conditions of a forward game

$$\forall i \in [N] \begin{cases} \nabla_{(X^{i},U^{i})} \mathcal{L}^{i}(\mathbf{X},\mathbf{U},\mu^{i},{}^{p}\lambda^{i},{}^{s}\lambda;\theta) = 0\\ 0 \leq {}^{p}g^{i}(X^{i},U^{i}) \perp {}^{p}\lambda^{i} \geq 0\\ h(\mathbf{X},\mathbf{U};\hat{\mathbf{x}}_{1}) = 0\\ 0 \leq {}^{s}g(\mathbf{X},\mathbf{U}) \perp {}^{s}\lambda \geq 0 \end{cases}$$

18

Motivation

Problem

Results

Inverse Games: Constrained Maximum Likelihood Estimation (MLE)

$$\begin{array}{l} \max_{\boldsymbol{\theta}, \mathbf{X}, \mathbf{U}} & p(\mathbf{Y} \mid \mathbf{X}, \mathbf{U}) \\ \text{s.t.} & (\mathbf{X}, \mathbf{U}) \text{ is a GNE of } \operatorname{Game}(\boldsymbol{\theta}) \end{array}$$

Challenge: how to efficiently encode the equilibrium constraints?

- Nonconvexity
- Complementarity conditions X constraint qualification
- Real-time computation

Motivation

Problem

Approach: Differentiable Games

The Forward Computation Graph

This entire computation graph can be made differentiable!

$$\begin{array}{ll} \max_{\boldsymbol{\theta}, \mathbf{X}, \mathbf{U}} & p(\mathbf{Y} \mid \mathbf{X}, \mathbf{U}) \\ \text{s.t.} & (\mathbf{X}, \mathbf{U}) \text{ is a GNE of } \operatorname{Game}(\boldsymbol{\theta}) \end{array}$$

Motivation

Problem

Approach

Results

Beyond MLE

Approach: Differentiable Games

The Forward Computation Graph

This entire computation graph can be made differentiable!

 \Rightarrow We can update estimates of θ via gradient descent on the loss function.

How?

$$\max_{\boldsymbol{\theta}} p(\mathbf{Y} \mid \mathbf{X}^{*}(\boldsymbol{\theta}), \mathbf{U}^{*}(\boldsymbol{\theta})) \bigvee \nabla \boldsymbol{\theta} p$$

Motivation

Approach: Differentiable Games

The Forward Computation Graph

This entire computation graph can be made differentiable!

 \Rightarrow We can update estimates of θ via gradient descent on the loss function.

How?

Math! (Implicit function theorem)

Motivation

Results

Example: Ramp-Merging

24

Motivation

Problem

Approach

Results

Beyond MLE

Summary

Example: Ramp-Merging

- Monte Carlo study: 3, 5, 7 players; 1200 trials total
- Unknown parameters: desired speed, target lane (12D for 6 opponents)
- Approaches

Motivation

Approach

Example: Ramp-Merging

		Monte Unkno (12D f
		Our
Co	ollis. inequalities (inverse game)	KKT constra
	Objective inference	Heuri
	Interaction	MP
	[1] Lasse Peters et al. "Inferring Objectives in Continuous Dynamic O	Games from No

- Carlo study: 3, 5, 7 players; 1200 trials total
- own parameters: desired speed, target lane for 6 opponents)
- aches

oise-Corrupted Partial State Observations". RSS. 2021.

Motivation

Problem

Approach

Results

Beyond MLE

Ramp-Merging: Quantitative Results

- Safety (fewer collisions)
 - Interaction reasoning is essential

Summary

Ramp-Merging: Quantitative Results

- Safety (fewer collisions)
 - Interaction reasoning is essential
 - Care about objective inference and inverse game inequalities in dense scenarios

Ramp-Merging: Quantitative Results

- Safety (fewer collisions)
 - Interaction reasoning is essential
 - Care about objective inference and inverse game inequalities in dense scenarios
- Efficiency (lower ego costs)
 - Interaction reasoning & objective inference are important in denser settings
 - Collision avoidance inequalities in inverse games does not matter

ours KKT-constrained heuristic mc

Motivation

Problem

Approach

Results

Beyond MLE

Summary

Ramp-Merging: Conclusions

- Safety (fewer collisions)
 - Interaction reasoning is essential
 - Care about objective inference and inverse game inequalities in dense scenarios
- Efficiency (lower ego costs)
 - Interaction reasoning & objective inference are important in denser settings
 - Collision avoidance inequalities in inverse games does not matter

Motivation

Ramp-Merging: Qualitative Results

Example: 2-Player Tracking Game

Motivation

Problem

Approach

Results

Beyond MLE

More videos: <u>https://www.youtube.com/watch?v=f0KJucC1Xyo</u>

Summary

Example: 2-Player Tracking Game

Motivation

Problem

Approach

Results

Beyond MLE

More videos: <u>https://www.youtube.com/watch?v=f0KJucC1Xyo</u>

Summary

Summary

- An adaptive model-predictive game-play (MPGP) framework enabled by differentiating through a game solver
 - handling inequalities in inverse games
 - differentiability

Motivation

Results

Future Work

- **Planning algorithm** utilizing the beliefs (stochastic games)
- End-to-end planning pipeline with **perception module**

Motivation

Results

Beyond MLE

Approach: "Forward" Games as Mixed Complementarity Problems (MCPs)

In a *Mixed Complementarity Problem*, we have decision variable $z \in \mathbb{R}^n$ and problem data $F(z) : \mathbb{R}^n \mapsto \mathbb{R}^n, \ell_j \in \mathbb{R} \cup \{-\infty\}, u_j \in \mathbb{R} \cup \{\infty\}, j \in [n]$. At the solution z^* , one of the following cases holds:

 $z_j^* = \ell_j, F_j(z^*) \ge 0$ $\ell_j < z_j^* < u_j, F_j(z^*) = 0$ $z_j^* = u_j, F_j(z^*) \le 0.$

Optimality conditions of an open-loop game can be cast as the problem data of an equivalent MCP!

$$\forall i \in [N] \begin{cases} \nabla_{(X^{i},U^{i})} \mathcal{L}^{i}(\mathbf{X},\mathbf{U},\mu^{i},{}^{p}\lambda^{i},{}^{s}\boldsymbol{\lambda};\boldsymbol{\theta}) = 0\\ 0 \leq {}^{p}g^{i}(X^{i},U^{i}) \perp {}^{p}\lambda^{i} \geq 0\\ h(\mathbf{X},\mathbf{U};\hat{\mathbf{x}}_{1}) = 0\\ 0 \leq {}^{s}g(\mathbf{X},\mathbf{U}) \perp {}^{s}\boldsymbol{\lambda} \geq 0 \end{cases} \quad \mathbf{z} = \begin{bmatrix} \mathbf{X}\\ \mathbf{U}\\ \boldsymbol{\mu}\\ \boldsymbol{\mu}\\ \boldsymbol{\lambda}^{1}\\ \vdots\\ \boldsymbol{p}\lambda^{N}\\ \boldsymbol{s}\boldsymbol{\lambda} \end{bmatrix} F(\mathbf{z};\boldsymbol{\theta}) = \begin{bmatrix} \nabla_{(X^{1},U^{1})}\mathcal{L}^{1}\\ \vdots\\ \nabla_{(X^{N},U^{N})}\mathcal{L}^{N}\\ h\\ \boldsymbol{p}g^{1}\\ \vdots\\ \boldsymbol{p}g^{N}\\ \boldsymbol{s}g \end{bmatrix}} \quad \boldsymbol{\ell} = \begin{bmatrix} -\infty\\ \vdots\\ -\infty\\ -\infty\\ 0\\ \vdots\\ 0\\ 0 \end{bmatrix} \quad \boldsymbol{u} = \begin{bmatrix} \infty\\ \vdots\\ \infty\\ \infty\\ \vdots\\ \infty\\ \infty \end{bmatrix}$$
 TUDelft

Solver reference: S. P. Dirkse and M. C. Ferris, "The PATH solver: A nommonotone stabilization scheme for mixed complementarity problems," 1995.

Approach: Differentiation Through Mixed Complementarity Problems $\boldsymbol{\theta}$

solveMCP $\rightarrow z^*$

Assumption: strong complementarity

In a *Mixed Complementarity Problem*, we have decision variable $z \in \mathbb{R}^n$ and problem data $F(z) : \mathbb{R}^n \mapsto \mathbb{R}^n, \ell_j \in \mathbb{R} \cup \{-\infty\}, u_j \in \mathbb{R} \cup \{\infty\}, j \in [n]$. At the solution z^* , one of the following cases holds:

$$z_j^* = \ell_j, F_j(\boldsymbol{z}^*; \boldsymbol{\theta}) > 0$$

$$\ell_j < z_j^* < u_j, F_j(\boldsymbol{z}^*; \boldsymbol{\theta}) = 0$$

$$z_j^* = u_j, F_j(\boldsymbol{z}^*; \boldsymbol{\theta}) < 0$$

Approach: Differentiation Through Mixed Complementarity Problems $\boldsymbol{\theta}$

solveMCP → **Z***

Assumption: strong complementarity

In a *Mixed Complementarity Problem*, we have decision variable $z \in \mathbb{R}^n$ and problem data $F(z) : \mathbb{R}^n \mapsto \mathbb{R}^n, \ell_j \in \mathbb{R} \cup \{-\infty\}, u_j \in \mathbb{R} \cup \{\infty\}, j \in [n]$. At the solution z^* , one of the following cases holds:

$$\ell_{j} < z_{j}^{*} = \ell_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) > 0$$

$$z_{j}^{*} < u_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) = 0$$

$$z_{j}^{*} = u_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) < 0$$

$$\nabla \boldsymbol{\theta} \, \tilde{\boldsymbol{z}}^{*} = 0$$

$$\tilde{\mathcal{I}} := \{k \in [n] \mid z_k^* = \ell_k \lor z_k^* = u_k\}$$

$$\widetilde{z}^* := [oldsymbol{z}^*]_{\widetilde{\mathcal{I}}}$$

Approach: Differentiation Through Mixed Complementarity Problems θ

solveMCP $\rightarrow z^*$

Assumption: strong complementarity

In a *Mixed Complementarity Problem*, we have decision variable $z \in \mathbb{R}^n$ and problem data $F(z): \mathbb{R}^n \mapsto \mathbb{R}^n, \ell_j \in \mathbb{R} \cup \{-\infty\}, u_j \in \mathbb{R} \cup \{\infty\}, j \in [n]$. At the solution z^* , one of the following cases holds:

$$z_{j}^{*} = \ell_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) > 0$$

$$\ell_{j} < z_{j}^{*} < u_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) = 0$$

$$z_{j}^{*} = u_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) < 0$$

$$\nabla_{\boldsymbol{\theta}} \bar{z}^{*} = - \left(\nabla_{\bar{z}^{*}} \bar{F} \right)^{-1} \left(\nabla_{\boldsymbol{\theta}} \bar{F} \right)$$

 $\bar{\mathcal{I}} := \{k \in [n] \mid F_k(\boldsymbol{z}^*; \boldsymbol{\theta}) = 0, \ell_k < z_k^* < u_k\}, \ \bar{z}^* := [\boldsymbol{z}^*]_{\bar{\mathcal{I}}}, \ \bar{F}(\boldsymbol{z}^*, \boldsymbol{\theta}) := [F(\boldsymbol{z}^*; \boldsymbol{\theta})]_{\bar{\mathcal{I}}}$

Implicit function theorem (IFT):

if invertible

$$0 = \nabla_{\boldsymbol{\theta}} \left[\bar{F}(\boldsymbol{z}^*(\boldsymbol{\theta}), \boldsymbol{\theta}) \right] = \nabla_{\boldsymbol{\theta}} \bar{F} + \left(\nabla_{\bar{z}^*} \bar{F} \right) \left(\nabla_{\boldsymbol{\theta}} \bar{z}^* \right) + \left(\nabla_{\tilde{z}^*} \bar{F} \right) \left(\nabla_{\boldsymbol{\theta}} \tilde{z}^* \right)$$

Approach: Differentiation Through Mixed Complementarity Problems $\theta \rightarrow solveMCP \rightarrow z^*$

Weak complementarity: subgradient; invertibility: least-square solution

In a *Mixed Complementarity Problem*, we have decision variable $z \in \mathbb{R}^n$ and problem data $F(z) : \mathbb{R}^n \mapsto \mathbb{R}^n, \ell_j \in \mathbb{R} \cup \{-\infty\}, u_j \in \mathbb{R} \cup \{\infty\}, j \in [n]$. At the solution z^* , one of the following cases holds:

$$z_{j}^{*} = \ell_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) > 0$$

$$\ell_{j} < z_{j}^{*} < u_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) = 0$$

$$z_{j}^{*} = u_{j}, F_{j}(\boldsymbol{z}^{*}; \boldsymbol{\theta}) < 0$$

$$\nabla_{\boldsymbol{\theta}} \bar{z}^{*} = - \left(\nabla_{\bar{z}^{*}} \bar{F}\right)^{-1} \left(\nabla_{\boldsymbol{\theta}} \bar{F}\right)$$

 $\bar{\mathcal{I}} := \{k \in [n] \mid F_k(\boldsymbol{z}^*; \boldsymbol{\theta}) = 0, \ell_k < z_k^* < u_k\}, \ \bar{z}^* := [\boldsymbol{z}^*]_{\bar{\mathcal{I}}}, \ \bar{F}(\boldsymbol{z}^*, \boldsymbol{\theta}) := [F(\boldsymbol{z}^*; \boldsymbol{\theta})]_{\bar{\mathcal{I}}}$

Implicit function theorem (IFT):

elft

if invertible

$$0 = \nabla_{\boldsymbol{\theta}} \left[\bar{F}(\boldsymbol{z}^*(\boldsymbol{\theta}), \boldsymbol{\theta}) \right] = \nabla_{\boldsymbol{\theta}} \bar{F} + \left(\nabla_{\bar{z}^*} \bar{F} \right) \left(\nabla_{\boldsymbol{\theta}} \bar{z}^* \right) + \left(\nabla_{\tilde{z}^*} \bar{F} \right) \left(\nabla_{\boldsymbol{\theta}} \tilde{z}^* \right)$$

