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Motivation

e Autonomous driving: robots need to reason about

interactions

e Our perspective: dynamic games (explicit modeling of

interactions, simultaneous predicting and planning)

Objective Inference \

® Alternative: predict-then-plan

observation likelihood loss

v

\ gradient steps on 8 /
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“Forward” Dynamic Games

An N-player open-loop Nash game as coupled trajectory optimization:

( min <]'L'(X7 e Qi) cost function
Xi,U
s.t. 5’3%4—1 = f'(z,ul),Vt € [T — 1] system dynamics
Vi € [N] 4 m'j = :?371 initial states
PG XU =0 private inequalities
\ sg(Xa U) >0 shared inequalities

Solution: generalized Nash equilibrium (GNE)

Ji(X*, Ui*; 92) S JZ((XZ, Xﬁi*), Ui; 92)

No unilateral change of controls can reduce a player’s costs.
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“Forward” Dynamic Games

An N-player open-loop Nash game as coupled trajectory optimization:

Partially observable stochastic game (POSG), generally intractable!!

( min J"'(X7 Ui;ei) cost function
XU
s.t. 5’77t;+1 = f'(z,ul),Vt € [T — 1] system dynamics
Vi € [N] < x'i = :?371 initial states
PEHX, T =10 private inequalities
\ sg(Xa U) >0 shared inequalities

Solution: generalized Nash equilibrium (GNE)

Ji(X*, Uz'*; 92) S Ji((Xi’Xﬂi*), Ui; 97,)

No unilateral change of controls can reduce a player’s costs.
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Inverse Games

observation
A
Y X
max  p(Y | X, U)
s.t. (X, U) is a GNE of the game I'(0)

Applications (w.r.t. explicit modeling of the interactions):

® Online interaction with other agents (POSG approximation)
e Trajectory prediction
e Tuning of the ego-agent’s controller to match desired behavior (similar to inverse RL)
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Inverse Games
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observation

A
max p(Y | X, U)

0,X,U
S.t.

(X,U) is a GNE of the game I'(#)

optimality conditions of a forward game

Challenge: how to efficiently encode the equilibrium constraints?

e Highly nonlinear

e Naive encoding violates constraint qualification (A" ¢(X,U) = 0)

e Real-time computation



Approach

The Forward Computation Graph

®

Y
@ solveGame —-p(YIX, U) -»@
(&)

This entire computation graph can be made differentiable!

= We can update estimates of 8 and x1 via gradient descent on the loss function.
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Approach

Differentiable Games | Extensions

® l

[% & solveGame —-p(YIlX, U -b@
—

The gradient signal can be back-propagated to a neural network, which learns to predict the game parameters.
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Approach: "Forward” Games as Mixed Complementarity Problems (MCPs)

4 )

In a Mixed Complementarity Problem, we have decision variable » € R" and problem data
F(z) :R" — R™ ¢; € RU{—00},u; € RU{o0},j € [n]. At the solution z* one of the following cases

holds:
Z; — éj,Fj(z*) >0
g] < Z; < Uj,Fj(Z*) =0
z7 =u;, Fj(2*) < 0.
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Solver reference: S. P. Dirkse and M. C. Ferris, “The PATH solver: A nommonotone stabilization scheme for mixed complementarity problems,” 1995.
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~N

[ In a Mixed Complementarity Problem, we have decision variable z ¢ R™ and problem data
F(z) :R" — R™ ¢; € RU{—00},u; € RU{o0},j € [n]. At the solution z* one of the following cases
holds:

N

Optimality conditions of a game can be cast as the solution to an equivalent MCP!

] [ Vo X, U, wi,PALx0) T [-oo] ]
Vi € [N] Voo £i(X, U’Mf’p)fl’s)\;e). =0 XN V(XN,UN)LN(X,'U,”i,p,\N,s,\;e) e ;
0<Pg"(X",U") LPX*>0 N WX, U: £1) e
— Z= " F(z;0) = P 1(}(1’U1) A 0 u=|:
h(X,Uix1) =0 PAL 7 . ;
0<%g(X,U) L*A>0 : : : :
=) o PAN g & G i) 0 :
_S)\_ L sg(X,U) ] ! 0 i e
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Solver reference: S. P. Dirkse and M. C. Ferris, “The PATH solver: A nommonotone stabilization scheme for mixed complementarity problems,” 1995.



Approach: Differentiation Through Mixed Complementarity Problems (MCPs)

6 — [ SolveMCP ] — z*

4 N
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holds:

\_ /
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2 (0) = 45, Fy(2*(0);
fJ<ZJ()<ug 5(27(0);

2 (0) = uy, F5(27(0); 6)

\_ /

)>0
)=0
< 0.
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Approach: Differentiation Through Mixed Complementarity Problems (MCPs)

6 — [ SolveMCP ] —_

/ Assumption: strong complementarity \
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holds:
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l\z

Implicit function theorem:

0= Vg [F(z7(0),0)] =

— — . —\ —1 —

\ VoF 4+ (Vs F)(Voz*) + (V3 F) (Vp3*) — V2" =— (VzF)  (VoF) /
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Approach: Differentiation Through Mixed Complementarity Problems (MCPs)

6 — [ SolveMCP ] —_

/Weak complementarity: subgradient \
Invertibility: least-square solution

In a Mixed Complementarity Problem, we have decision variable z € R" and problem data
F(z) :R" — R™ ¢; € RU{—00},u; € RU{o0},; € [n]. At the solution z* one of the following cases

holds:
Z;(0) = );0) >O\
L <z(9)<uj, ( (9),9)20 Voz* =0
=0 =1 m<0///’0

Implicit function theorem:

0=V [F(z(0),0)] =

\\‘ VoF 4+ (Vs F)(Voz*) + (V3 F) (Vp3*) — V2" =— (VzF)  (VoF) 4//
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Example: 7-player Highway Driving
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supplementary video: https://www.youtube.com/watch?v=fOKJuCC1Xyo



https://www.youtube.com/watch?v=f0KJuCC1Xyo
https://docs.google.com/file/d/1YVRv-LZw0n-xgoi-fuITq2M1sg2_j0lE/preview

Example: /-player Highway Driving
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Example: Guiding-Tracking Game on Jackals

2X
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https://docs.google.com/file/d/1qzRLVZZNjQkBI0LTI074bQdmcjNKwJ7J/preview

Example: Human-Robot Interaction

1x
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https://docs.google.com/file/d/1DD1V0OMwM6bZQcYm7QawbMm8-Dz2kiCA/preview

Future Work

- Integrated end-to-end planning with perception module (picking up additional visual cues, such as gaze or body language, for
inference)

- Robustness against uncertainty (reasoning about the inference confidence)
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Thanks for your attention! -D
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